Electrodynamics

If you want to apply electrodynamics to your materials research project, this Specialization will help you do so. Electromagnetic force is one of the fundamental forces that hold atoms and molecules together, which are the building blocks of any materials. In four courses, you will learn the foundations of electrodynamics starting from the nature of electrical force up to the level of in-depth solutions of Maxwell equations. We will walk you through vector calculus, concepts of field, flux and circulation, electrostatics, and magnetostatics as well as electrodynamics. By the end of this Specialization you will understand four beautiful equations organized by Maxwell in a full picture. Special relativity will be covered as well to grasp the idea that magnetism is a relativistic effect of electricity. The approach taken in this Specialization complements traditional approaches, covering a fairly complete treatment of the physics of electricity and magnetism, and adds Feynman\'s unique and vital approach of grasping a whole picture of the physical universe. In addition, this Specialization uniquely bridges the gap between the knowledge of electrodynamics and its practical applications to research in materials science, information technology, electrical engineering, chemistry, chemical engineering, energy storage, energy harvesting, and other materials related fields.

Created by: Korea Advanced Institute of Science and TechnologyKAIST

Language: English

Find Out More
Share
Facebook
Twitter
Pinterest
Reddit
StumbleUpon
LinkedIn
Email

University of Oregon Online Courses

Back to Top

Log In

Contact Us

Upload An Image

Please select an image to upload
Note: must be in .png, .gif or .jpg format
OR
Provide URL where image can be downloaded
Note: must be in .png, .gif or .jpg format

By clicking this button,
you agree to the terms of use

By clicking "Create Alert" I agree to the Uloop Terms of Use.

Image not available.

Add a Photo

Please select a photo to upload
Note: must be in .png, .gif or .jpg format